2019 Differential and Integral Calculus Assignment Markscheme

1.

(a) valid approach
e.g. $f^{\prime \prime}(x)=0$, the max and min of f^{\prime} gives the points of inflexion on f
$-0.114,0.364$ (accept $(-0.114,0.811)$ and $(0.364$, 2.13))

A1A1 N1N
1
(b) METHOD 1
graph of g is a quadratic function \quad R1 N1
a quadratic function does not have any points of inflexion R1 N1

METHOD 2

graph of g is concave down over entire domain \quad R1 N1
therefore no change in concavity \quad R1 N1
METHOD 3
$g^{\prime \prime}(x)=-144 \quad$ R1 N1
therefore no points of inflexion as $g^{\prime \prime}(x) \neq 0 \quad$ R1 N1
2.
(a) (i) $-1.15,1.15$

A1A1 N2
(ii) recognizing that it occurs at P and Q
e.g. $x=-1.15, x=1.15$
$k=-1.13, k=1.13$
A1A1 N3
(b) evidence of choosing the product rule
e.g. $u v^{\prime}+v u^{\prime}$
derivative of x^{3} is $3 x^{2}$
derivative of $\ln \left(4-x^{2}\right)$ is $\frac{-2 x}{4-x^{2}}$
correct substitution
e.g. $x^{3} \times \frac{-2 x}{4-x^{2}}+\ln \left(4-x^{2}\right) \times 3 x^{2}$
$g^{\prime}(x)=\frac{-2 x^{4}}{4-x^{2}}+3 x^{2} \ln \left(4-x^{2}\right)$

A1A1 N2
(d) $w=2.69, w<0$

A1A2 N2
3.
(a) $2.31 \quad \mathrm{~A} 1$
(b) (i) 1.02

A1 N1
(ii) 2.59

A1 N1
(c) $\int_{p}^{q} f(x) \mathrm{d} x=9.96$

A1 N1
split into two regions, make the area below the x-axis positive
R1R1 N2
4.
(a)(i) \& (c)(i)

Notes: The sketch does not need to be on graph paper. It should have the correct shape, and the points (0, 0), (1.1, $0.55),(1.57,0)$ and $(2,-1.66)$ should be indicated in some way.
Award (A1) for the correct shape.
Award (A2) for 3 or 4 correctly indicated points, (A1) for 1 or 2 points.
(ii) Approximate positions are
positive x-intercept $(1.57,0)$
maximum point (1.1, 0.55)
(A1)
(A1)
end points $(0,0)$ and $(2,-1.66)$
(A1)(A1)

Note: Award (A2) if answer correct.
(c) (i) see graph
(ii) $\int_{0}^{\frac{\pi}{2}} x^{2} \cos x d x$

Note: Award (A1) for limits, (A1) for rest of integral correct (do not penalize missing dx).
(d) Integral $=0.467$

OR
Integral $=\left[x^{2} \sin x+2 x \cos x-2 \sin x\right]_{0}^{\pi / 2}$
$=\left[\frac{\pi^{2}}{4}(1)+2\left(\frac{\pi}{2}\right)(0)-2(1)\right]-[0+0-0]$
$=\frac{\pi}{2}-2$ (exact) or $0.467(3 \mathrm{sf})$
5.
(a) evidence of valid approach
e.g. $f(x)=0$, graph
$a=-1.73, b=1.73(a=-\sqrt{3}, b=\sqrt{3})$
(b) attempt to find max
e.g. setting $f^{\prime}(x)=0$, graph
$c=1.15(\operatorname{accept}(1.15,1.13))$
(c) attempt to substitute either limits or the function into formula
e.g. $V=\pi \int_{0}^{c}[f(x)]^{2} \mathrm{~d} x, \pi \int\left[x \ln \left(4-x^{2}\right)\right]^{2}, \pi \int_{0}^{1.149 \ldots} y^{2} \mathrm{~d} x$
$V=2.16$
A2 N2
(d) valid approach recognizing 2 regions
e.g. finding 2 areas
correct working
e.g. $\int_{0}^{-1.73 \ldots} f(x) \mathrm{d} x+\int_{0}^{1.149 \ldots} f(x) \mathrm{d} x ;-\int_{-1.73 \ldots .}^{0} f(x) \mathrm{d} x+\int_{0}^{1.149 \ldots} f(x) \mathrm{d} x$ area $=2.07$ (accept 2.06)

A2 N3
[12]

Question 6 (12 marks)
Amy does a bungee jump from a platform 50 m above a river. Let h be her height above the river, in metres, at a time $t y$ seconds after jumping. Her velocity is given by $v=2 t^{2}-10 t$.
a) What is the initial acceleration that Amy experiences?

$$
a=\frac{d v}{d t}=4 t-10
$$

at $t=0, \quad a=4 \times 0-10$
$=-10 \mathrm{~ms}^{-2}$ (IA) (decelerating at $10 \mathrm{~ms}^{-2}$)
b) At what time is Amy's velocity zero?

$$
\begin{align*}
2 t^{2}-10 t & =0 \\
2 t(t-5) & =0 \\
t & =0 \text { or } 5 \text { secs (1A } \tag{2}
\end{align*}
$$

c) How close to the river does Amy get?

Bungee stops when $V=0$.

$$
\begin{aligned}
S & =\int v d t \\
& =\int 2 t^{2}-10 t d t \\
& =\frac{2 t^{3}}{3}-\frac{10 t^{2}}{2}+c 1 m
\end{aligned}
$$

When $t=0, s=0$, so $c=0$.
d) What distance does Amy travel in the first seven seconds?
e) How long does it take for Amy to return to the platform?
$\begin{aligned} \text { returns when } s & =0 \\ \frac{2}{3} t^{3}-5 t^{2} & =0\end{aligned}$

$$
t^{2}(2 / 3 t-5)=0
$$

\therefore returns after $7 \frac{1}{2} \sec$ (IA)

A boat travelling in a straight line has its engine turned off at $t=0$. Its velocity at time t seconds thereafter is given by $v(t)=\frac{100}{(t+2)^{2}} \mathrm{~ms}^{-1}$.
a) Find the initial velocity of the boat, and its velocity after 3 seconds.
$V(0)=\frac{100}{4}=25 \mathrm{~ms}^{-1}$
$V(3)=\frac{100}{25}=4 \mathrm{~ms}^{-1}$
b) Discuss $v(t)$ as $t \rightarrow \infty$.

As $t \rightarrow \infty, V(t) \rightarrow 0$ or decreasing function, asymptote at $V(t)=0$. (AA)
c) Sketch a graph of $v(t)$ against t.

d) Find how long it takes for the boat to travel 30 metres from when the engine is turned off.

$$
\begin{align*}
S & =\int v(t) d t \\
& =\int 100(t+2)^{-2} d t \\
& =100 \frac{(t+2)^{-1}}{-1}+c \tag{in}\\
\text { at } t & =0, S=0, \\
0 & =\frac{-100}{2}+c \\
c & =50
\end{aligned} \quad\left\{\begin{aligned}
\quad S & =\frac{-100}{t+2} \\
\text { when } S & =30 \\
30 & =\frac{-100}{t+2}+50 \\
\frac{100}{t+2} & =20 \\
5 & =t+2 \\
t & =3 .
\end{align*} \quad \begin{array}{rl}
1 \mathrm{~A} \\
\text { after }
\end{array}\right.
$$

\therefore after 3 see, boat has travelled 30 m .
e) Find the acceleration of the boat at any time t.

$$
\begin{align*}
a & =\frac{d v}{d t} \tag{MM}\\
& =100 \times-2(t+2)^{-3} \\
& =\frac{-200}{(t+2)^{3}} \tag{A}
\end{align*}
$$

f) Show that $\frac{d v}{d t}=-k v^{\frac{3}{2}}$, and find the value of the constant k.

$$
\begin{align*}
\frac{-200}{(t+2)^{3}} & =-k\left(\frac{100}{(t+2)^{2}}\right)^{3 / 2} \\
& =-k \times 100^{3 / 2} \times\left[(t+2)^{-2}\right]^{3 / 2} \\
& =-k \times 1000 \times(t+2)^{-3} \\
\frac{-200}{(t+2)^{3}} & =\frac{-1000 k}{(t+2)^{3}} \tag{2}\\
\therefore-200 & =-1000 k \\
k & =\frac{-200}{-1000} \\
& =\frac{1}{5}
\end{align*}
$$

