## 2019 Differential and Integral Calculus Assignment Markscheme

1.

| (a) | valid approach<br><i>e.g.</i> $f''(x) = 0$ , the max and min of $f'$ gives the points of inflexion on $f$ |                                                                                                    | R1       |                        |
|-----|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------|------------------------|
|     |                                                                                                           | -0.114, 0.364 (accept (-0.114, 0.811) and (0.364, 2.13))<br>1                                      | A1A1     | N1N                    |
|     | (b)                                                                                                       | METHOD 1                                                                                           |          |                        |
|     |                                                                                                           | graph of $g$ is a quadratic function<br>a quadratic function does not have any points of inflexion | R1<br>R1 | N1<br>N1               |
|     |                                                                                                           | METHOD 2                                                                                           |          |                        |
|     |                                                                                                           | graph of $g$ is concave down over entire domain therefore no change in concavity                   | R1<br>R1 | N1<br>N1               |
|     |                                                                                                           | METHOD 3                                                                                           |          |                        |
|     |                                                                                                           | g''(x) = -144<br>therefore no points of inflexion as $g''(x) \neq 0$                               | R1<br>R1 | N1<br>N1<br><b>[5]</b> |
| 2.  |                                                                                                           |                                                                                                    |          |                        |
| (a) | (i)                                                                                                       | -1.15, 1.15                                                                                        | A1A1     | N2                     |
|     |                                                                                                           | (ii) recognizing that it occurs at P and Q<br>e.g. x = -1.15, x = 1.15                             | (M1)     |                        |
|     |                                                                                                           | k = -1.13, k = 1.13                                                                                | A1A1     | N3                     |
|     | (b)                                                                                                       | evidence of choosing the product rule $e.g. uv' + vu'$                                             | (M1)     |                        |
|     |                                                                                                           | derivative of $x^3$ is $3x^2$                                                                      | (A1)     |                        |
|     |                                                                                                           | derivative of ln (4 – $x^2$ ) is $\frac{-2x}{4x^2}$                                                | (A1)     |                        |
|     |                                                                                                           | 4-x correct substitution                                                                           | A1       |                        |
|     |                                                                                                           | e.g. $x^3 \times \frac{-2x}{4-x^2} + \ln(4-x^2) \times 3x^2$                                       |          |                        |
|     |                                                                                                           | $g'(x) = \frac{-2x^4}{4-x^2} + 3x^2 \ln(4-x^2)$                                                    | AG       | N0                     |







Notes: The sketch does not need to be on graph paper. It should have the correct shape, and the points (0, 0), (1.1, 0.55), (1.57, 0) and (2, -1.66) should be indicated in some way. Award (A1) for the correct shape. Award (A2) for 3 or 4 correctly indicated points, (A1) for 1 or 2 points.

(ii)Approximate positions are<br/>positive x-intercept (1.57, 0)(A1)<br/>(A1)<br/>end points (0, 0) and (2, -1.66)(A1)(A1)(A1)

(b)  $x^2 \cos x = 0$   $x \neq 0 \Rightarrow \cos x = 0$  (M1)

$$\Rightarrow x = \frac{\pi}{2} \tag{A1} 2$$

(A3)

*Note:* Award (A2) if answer correct.

(c) (i) see graph (A1)

(ii) 
$$\int_0^{\frac{\pi}{2}} x^2 \cos x \, dx$$
 (A2) 3

Note: Award (A1) for limits, (A1) for rest of integral correct (do not penalize missing dx).

$$(d) Integral = 0.467 \tag{G3}$$

OR

Integral = 
$$\left[x^{2} \sin x + 2x \cos x - 2 \sin x\right]_{0}^{\pi/2}$$
 (M1)

$$= \left\lfloor \frac{\pi^2}{4} (1) + 2 \left( \frac{\pi}{2} \right) (0) - 2(1) \right\rfloor - [0 + 0 - 0]$$
(M1)
  

$$\pi - 2 \left( (-1) \right) = 0 + 1 \left\{ \overline{2} \right\} (0) - 2(1) = 0 + 0 - 0 = 0$$
(M1)

$$= \frac{\pi}{2} - 2 \text{ (exact) or } 0.467 \text{ (3 sf)}$$
(A1) 3

## 5.

evidence of valid approach (a) (M1) *e.g.* f(x) = 0, graph

$$a = -1.73, b = 1.73 \ (a = -\sqrt{3}, b = \sqrt{3})$$
 A1A1 N3

attempt to find max (b) (M1) *e.g.* setting f'(x) = 0, graph

$$c = 1.15 (accept (1.15, 1.13))$$
 A1 N2

(c) attempt to substitute either limits or the function into formula M1  
e.g. 
$$V = \pi \int_0^c [f(x)]^2 dx, \pi \int [x \ln(4-x^2)]^2, \pi \int_0^{1.149...} y^2 dx$$
  
 $V = 2.16$  A2 N2

valid approach recognizing 2 regions (d) (M1) *e.g.* finding 2 areas

correct working

correct working (A1)  
e.g. 
$$\int_{0}^{-1.73...} f(x) dx + \int_{0}^{1.149...} f(x) dx; -\int_{-1.73...}^{0} f(x) dx + \int_{0}^{1.149...} f(x) dx$$

area = 
$$2.07$$
 (accept 2.06) A2 N3

[12]

## Question 6 (12 marks)

Amy does a bungee jump from a platform 50 m above a river. Let *h* be her height above the river, in metres, at a time *ty* seconds after jumping. Her velocity is given by  $v = 2t^2 - 10t$ .

- a) What is the initial acceleration that Amy experiences?
  - a = dv = 4t 10 (m)
- at t=0,  $a = 4 \times 0 10$ =  $-10 \text{ ms}^{-2}$  (decelerating at 10 ms^{-2})
- b) At what time is Amy's velocity zero?
  - $2t^{2} 10t = 0$  (1M) 2t(t-5) = 0t = 0 or 5 sus (1A)
- c) How close to the river does Amy get?

When

Bungee Stops when 
$$V=0$$
.  
 $S = \int v \, dt$   
 $= \int 2t^2 - 10t \, dt$   
 $= \frac{2t^3}{3} - \frac{10t^2}{2} + C$  (1<sup>m</sup>)  
 $t=0, s=0, so c=0.$   
 $S = \frac{2}{3}t^3 - 5t^2$   
 $at t=5, s=\frac{2}{3}x5^3 - 5x5^2$   
 $= -41^2/3 m \cdot 1^A$   
 $i = 8^1/3 m \cdot 1^A$ 

d) What distance does Amy travel in the first seven seconds?

$$dist = \int_{0}^{7} |2t^{2} - 10t| dt$$

$$= 67m$$

$$(1A)$$

e) How long does it take for Amy to return to the platform?

$$\begin{array}{c} \text{returns When } S = 0. \\ \frac{2}{3}t^3 - 5t^2 = 0 \text{ (IM)} \\ t^2(\frac{2}{3}t-5) = 0 \end{array} \end{array} \right\} \begin{array}{c} t = 0 \text{ or } \frac{2}{3}t-5=0. \\ t = 7\frac{1}{2}. \\ \therefore \text{ returns after } 7\frac{1}{2}. \\ \text{ sec IA} \\ 6 \end{array}$$

(3)

(3)

(2)

(2)

## Question 7 (14 marks)

A boat travelling in a straight line has its engine turned off at t = 0. Its velocity at time t seconds thereafter is given by

$$v(t) = \frac{100}{(t+2)^2} \text{ ms}^{-1}.$$
a) Find the initial velocity of the boat, and its velocity after 3 seconds.  

$$V(0) = \frac{100}{4} = 25 \text{ ms}^{-1} \text{ (IA)}$$

$$V(3) = \frac{100}{25} = 4 \text{ ms}^{-1} \text{ (IA)}$$
b) Discuss  $v(t)$  as  $t \to \infty$ .  
As  $t \to \infty$ ,  $V(t) \to 0$  or, decreasing function, asymptote at  $V(t) = 0$ . (IA)

c) Sketch a graph of v(t) against t.

1



d) Find how long it takes for the boat to travel 30 metres from when the engine is turned off.

$$S = \int v(t) dt$$

$$= \int 100 (t+2)^{-2} dt$$

$$= 100 (t+2)^{-1} + C \text{ (m)}$$

$$30 = -\frac{100}{t+2} + 50 \text{ (m)}$$

$$30 = -\frac{100}{t+2} + 50 \text{ (m)}$$

$$30 = -\frac{100}{t+2} + 50 \text{ (m)}$$

$$\frac{100}{t+2} = 20$$

$$5 = t+2$$

$$t = 3. \text{ (m)}$$

$$C = 50$$

$$7$$

(1)

(3)

e) Find the acceleration of the boat at any time t.

$$a = \frac{dv}{dt} \qquad (IM) \\ = 100 \times -2 (t+2)^{-3} \\ = \frac{-200}{(t+2)^{3}} \qquad (IA)$$

f) Show that  $\frac{dv}{dt} = -kv^{\frac{3}{2}}$ , and find the value of the constant k.

$$\frac{-200}{(t+2)^3} = -K \left(\frac{100}{(t+2)^2}\right)^{3/2}$$
$$= -K \times 100^{3/2} \times \left[(t+2)^{-2}\right]^{3/2}$$
$$= -K \times 1000 \times (t+2)^{-3}$$

$$\frac{-200}{(t+2)^3} = \frac{-1000 \text{ K}}{(t+2)^3} \qquad \text{(m)}$$

 $=\frac{1}{5}$  (1A)

$$k = -200$$
  
 $k = -200$ 

(2)

(2)