Date: 30 April 2019

Start Time: 12:15

Finish Time: 12:55

Total Time Allowed for Task: 40 minutes

Student Name: \qquad

Teacher Name: \qquad

Conditions

Calculators allowed.
Data booklet permitted.

All answers should be given exactly or correct to three significant figures unless otherwise specified.

Results

Overall:
/41
\%
(1-7 Grade)

1a. Let $f(x)=(x-1)(x-4)$.
Find the x-intercepts of the graph of f.

1b. The region enclosed by the graph of f and the x-axis is rotated 360° about the x-axis.
Find the volume of the solid formed.

2a. Let $f(x)=\sqrt[3]{x^{4}}-\frac{1}{2}$.
Find $f^{\prime}(x)$.

2b. Find $\int f(x) \mathrm{d} x$.

3a. A particle moves along a straight line such that its velocity, $v \mathrm{~ms}^{-1}$, is given by $v(t)=10 t \mathrm{e}^{-1.7 t}$, for $t \geqslant 0$.

On the grid below, sketch the graph of v, for $0 \leqslant t \leqslant 4$.

3b. Find the distance travelled by the particle in the first three seconds.

3c. Find the velocity of the particle when its acceleration is zero.

4a. A particle's displacement, in metres, is given by $s(t)=2 t \cos t$, for $0 \leq t \leq 6$, where t is the time in seconds.

On the grid below, sketch the graph of s.

4b. Find the maximum velocity of the particle.

5a. The graph of $y=(x-1) \sin x$, for $0 \leq x \leq \frac{5 \pi}{2}$, is shown below.

The graph has x-intercepts at $0,1, \pi$ and k.
Find k.

5b. The shaded region is rotated 360° about the x-axis. Let V be the volume of the solid formed.
Write down an expression for V.
[3 marks]
5c. The shaded region is rotated 360° about the x-axis. Let V be the volume of the solid formed.
Find V.

6a. A particle P moves along a straight line. Its velocity $v_{\mathrm{P}} \mathrm{m} \mathrm{s}^{-1}$ after t seconds is given by $v_{\mathrm{P}}=\sqrt{t} \sin \left(\frac{\pi}{2} t\right)$, for $0 \leqslant t \leqslant 8$. The following diagram shows the graph of v_{P}.

Write down the first value of t at which P changes direction.

6b. Find the total distance travelled by P , for $0 \leqslant t \leqslant 8$.

6c. A second particle Q also moves along a straight line. Its velocity, $v_{\mathrm{Q}} \mathrm{m} \mathrm{s}^{-1}$ after t seconds is given by $v_{\mathrm{Q}}=\sqrt{t}$ for $0 \leqslant t \leqslant 8$. After k seconds Q has travelled the same total distance as P .

Find k.

