

St Leonard's College

Year 12 IB Mathematics SL

Integral Calculus Test – Calculator

Date: 30 April 2019

Start Time: 12:15

Finish Time: 12:55

Total Time Allowed for Task: 40 minutes

Student Name:_____

Teacher Name: _____

Conditions

Calculators allowed.

Data booklet permitted.

All answers should be given **exactly** or correct to **three** significant figures unless otherwise specified.

Results

Overall:

/41

%

(1-7 Grade)

1a. Let f(x) = (x-1)(x-4). Find the *x*-intercepts of the graph of *f*.

[3 marks]

1b. The region enclosed by the graph of f and the x-axis is rotated 360° about the x-axis.

Find the volume of the solid formed.

[3 marks]

2a. Let $f(x) = \sqrt[3]{x^4} - \frac{1}{2}$.

Find f'(x).

[2 marks]

2b. Find $\int f(x) dx$.

[4 marks]

3a. A particle moves along a straight line such that its velocity, $v \text{ ms}^{-1}$, is given by $v(t) = 10te^{-1.7t}$, for $t \ge 0$.

On the grid below, sketch the graph of v, for $0 \leqslant t \leqslant 4$.

[3 marks]

3b. Find the distance travelled by the particle in the first three seconds.

[2 marks]

3c. Find the velocity of the particle when its acceleration is zero.

[3 marks]

4a. A particle's displacement, in metres, is given by $s(t) = 2t \cos t$, for $0 \le t \le 6$, where t is the time in seconds.

On the grid below, sketch the graph of \boldsymbol{s} .

[4 marks]

4b. Find the maximum velocity of the particle.

[3 marks]

5a. The graph of $y = (x - 1) \sin x$, for $0 \le x \le \frac{5\pi}{2}$, is shown below.

The graph has *x*-intercepts at 0, 1, π and *k*.

Find k.

[2 marks]

5b. The shaded region is rotated 360° about the *x*-axis. Let *V* be the volume of the solid formed. Write down an expression for *V*.

[3 marks]

5c. The shaded region is rotated **360**° about the *x*-axis. Let *V* be the volume of the solid formed. Find *V*. **6a.** A particle P moves along a straight line. Its velocity $v_{\rm P} \,{\rm m}\,{\rm s}^{-1}$ after t seconds is given by $v_{\rm P} = \sqrt{t}\sin\left(\frac{\pi}{2}t\right)$, for $0 \le t \le 8$. The following diagram shows the graph of $v_{\rm P}$.

Write down the first value of t at which P changes direction.

[1 mark]

6b. Find the **total** distance travelled by P, for $0 \le t \le 8$.

[2 marks]

6c. A second particle Q also moves along a straight line. Its velocity, $v_Q \text{ m s}^{-1}$ after t seconds is given by $v_Q = \sqrt{t}$ for $0 \le t \le 8$. After k seconds Q has travelled the same total distance as P.

Find k.

[4 marks]