VCE PHYSICAL EDUCATION UNIT 3 AOS 2

CHARACTERISTICS OF THE THREE ENERGY SYSTEMS

Presented by Chris Hudd

Study design dot point:

• Characteristics of the three energy systems (ATP-CP, anaerobic glycolysis, aerobic system) for physical activity, including rate of ATP production, the yield of each energy system, fatigue/limiting factors and recovery rates associated with active and passive recoveries.

Overloaded cars and bikes

Source: Wikimedia Commons

The energy systems' role in energy production

Theory summary

The three energy systems work together to supply the energy required to resynthesise ATP. Their relative contribution is determined by the intensity and the duration of the exercise.

The ATP-CP system

Theory summary

The ATP-CP system produces energy by breaking down the chemical fuel Creatine Phosphate. Energy is produced at an explosive rate due to the simple anaerobic chemical reactions that take place.

The system is limited by the amount of Creatine Phosphate stored in the muscles.

The ATP-CP system

Theory summary

The following table displays some key characteristics of the ATP-CP System.

Characteristic	ATP-CP system	
Exercise	The predominant system for all maximum intensity exercise up to 20 seconds in duration.	
Fuel Source	Creatine Phosphate	
Anaerobic/Aerobic	Anaerobic	
Rate of energy for ATP resynthesis	Explosive/Instantaneous 3.6 mol/min	AT
Intensity of activity	Maximal Intensity (95+% MHR)	
Limiting Factor (Fatigue)	Limited fuel stores (CP Depletion)	ADP
Amount of energy produced	Limited yield 0.7 ATP for every CP molecule	
Duration of activity	0-10 seconds	
By-products	Creatine, Pi	

The ATP-CP system The ATP-CP system in action

Anaerobic glycolysis

Theory summary

The anaerobic glycolysis energy system produces energy by partially breaking down Glucose anaerobically (no oxygen).

Energy is produced at a fast rate due to the simple anaerobic chemical reactions that take place. When compared to the ATP-CP system, this process is more complex as it requires a greater number of steps.

The system is limited by the accumulation of hydrogen ions (H +) that are by-products of the process.

Anaerobic glycolysis

Theory summary

The following table displays some key characteristics of the anaerobic glycolysis system.

Characteristic	Anaerobic Glycolysis	
Exercise	Predominant system for high intensity exercise up to 60 seconds in duration.	
Fuel source	Glycogen	
Anaerobic/Aerobic	Anaerobic	
Rate of energy for ATP resynthesis	Fast, but not as fast as ATP-CP system 1.6 mol/min	ATP
Intensity of activity	High intensity exercise (85 – 95% MHR)	
Limiting factor (fatigue)	Accumulation of metabolic by-product (H + ions)	ADP + P
Amount of energy produced	Small yield 2-3 ATP per glucose molecule	
Duration of activity	10-75 seconds	
By-products	Lactate, H + ions	

Anaerobic glycolysis The anaerobic glycolysis system in action

Wayde van Niekerk (100m split times)

Source: Pixabay Source: www.youtube.com/watch?v=xG91krXuxyw © Chris Hudd & Edrolo 2017

The aerobic system

Theory summary

The aerobic system produces energy by breaking down glycogen or free fatty acids. Energy is produced at a slow rate due to the complex chemical reactions, however the system can continue to supply energy for many hours.

The aerobic system

Theory summary

The following table displays some key characteristics of the Aerobic system:

Characteristic	The aerobic system
Exercise	Predominant system for long duration, low/submaximal intensity exercise.
Fuel source	Glycogen and triglycerides
Anaerobic/Aerobic	Aerobic
Rate of energy for ATP resynthesis	Slow Glycogen 1.0 mol/min, triglycerides < 1.0 mol/min
Intensity of activity	Submaximal intensity exercise (70 – 85% MHR) Resting/low intensity exercise (> 70% MHR)
Limiting factor (fatigue)	Fuel depletion (glycogen) Thermoregulatory fatigue
Amount of energy produced	Large yield 38 ATP per glycogen molecule 441 ATP per triglyceride (147 per FFA)
Duration of activity	75+ seconds
By-products	C0 ₂ , H ₂ O, heat

ATP

ADP + P

The aerobic system The aerobic system in action

Comparing the energy systems Rate of energy production

Comparing the energy systems Yield of energy production

Comparing the energy systems Advantages of each energy system

Energy system	Advantages	Examples of use
ATP-CP system	Simple, anaerobic energy pathway Provides energy at an explosive rate Allows for maximal intensity effort	
Anaerobic glycolysis	Also an anaerobic energy pathway Provides energy at a fast rate Allows for high intensity effort Provides energy in larger amounts than ATP- CP	
Aerobic glycolysis	Provides an "endless" amount of energy Allows sustained, long duration effort Produces non-toxic by-products Ability to oxidise lactic acid	

Comparing the energy systems Disadvantages of each energy system

Energy system	Disadvantages
ATP-CP system	Limited intramuscular fuel stores (CP) Very limited amounts of energy produced Short duration of muscular effort
Anaerobic glycolysis	Relatively small amounts of energy produced By-product of H+ ions lead to fatigue
Aerobic glycolysis	Delay in aerobic responses at start of exercise Slow rate of energy production Submaximal intensity only allowed for muscular effort.

Multiple choice activity

The ATP-CP energy system produces energy at a:

- A. slow rate with a low yield.
- B. slow rate with a high yield.
- C. fast rate with a low yield.
- D. fast rate with a high yield.
- E. I don't know.

Multiple choice - Response

The ATP-CP energy system produces energy at a:

- A. slow rate with a low yield.
- B. slow rate with a high yield.
- C. fast rate with a low yield. (86% correct)
- D. fast rate with a high yield.
- E. I don't know.

??? Multiple choice activity

Most of the lactic acid produced during submaximal exercise is:

- A. converted to protein.
- B. excreted in urine and sweat.
- C. used as a fuel for the aerobic system.
- D. converted to glycogen in the muscles and liver.
- E. I don't know.

? ? ? Multiple choice - Response

Most of the lactic acid produced during submaximal exercise is:

- A. converted to protein.
- B. excreted in urine and sweat.

C. used as a fuel for the aerobic system. (27% correct)

D. converted to glycogen in the muscles and liver.

E. I don't know.

Multiple choice activity

Which one of the following is a by-product of aerobic respiration?

- A. Lactic acid
- B. Calcium ions
- C. Hydrogen ions
- D. Carbon dioxide
- E. I don't know.

Multiple choice – Response

Which one of the following is a by-product of aerobic respiration?

- A. Lactic acid
- B. Calcium ions
- C. Hydrogen ions
- D. Carbon dioxide (81% correct)
- E. I don't know.

Multiple choice activity

Which of the following characteristics is associated with energy production in the anaerobic glycolysis system?

- A. Energy production is limited by the amount of chemical fuel stored in the muscles
- B. Maximum ATP production is 0.7 moles
- C. ATP production occurs in the mitochondria
- D. Peak power during maximal efforts occurs in 5 -15 seconds
- E. I don't know.

Teacher's tip

Get in the habit of ruling out

help you narrow the options in

multiple choice.

incorrect responses to

Multiple choice – Response

Which of the following characteristics is associated with energy production in the anaerobic glycolysis system?

- A. Energy production is limited by the amount of chemical fuel stored in the muscles
- B. Maximum ATP production is 0.7 moles
- C. ATP production occurs in the mitochondria

D. Peak power during maximal efforts occurs in 5 -15 seconds (48% correct)

E. I don't know.

Teacher's tip

Get in the habit of ruling out

help you narrow the options in

multiple choice.

incorrect responses to

⑦ ⑦ Multiple choice activity

Our body uses three energy systems to produce ATP – aerobic, anaerobic glycolysis and ATP-CP. They produce ATP at different rates and have different capacities as shown in the table below.

	Rate (maximal power output)	Capacity (kcal available)
Energy system X	16 kcal/min	14.5
Energy system Y	36 kcal/min	11.1
Energy system Z	10 kcal/min	> 100 000
Which of the following	correctly identifies each of the three ene	ergy systems?
A. X = ATP-CP	Y = anaerobic glycolysis	Z = aerobic
B. X = anaerobic glycol	ysis Y = ATP-CP	Z = aerobic
C. X = ATP-CP	Y = aerobic	Z = anaerobic glycolysis
D. X = anaerobic glycol	ysis Y = aerobic	Z = ATP-CP
E. I don't know.		

⑦ ⑦ Multiple choice – Response

Our body uses three energy systems to produce ATP – aerobic, anaerobic glycolysis and ATP-CP. They produce ATP at different rates and have different capacities as shown in the table below.

	Rate (maximal power output)	Capacity (kcal available)
Energy system X	16 kcal/min	14.5
Energy system Y	36 kcal/min	11.1
Energy system Z	10 kcal/min	> 100 000
Which of the following c	orrectly identifies each of the three en	ergy systems?
A. X = ATP-CP	Y = anaerobic glycolysis	Z = aerobic
B. X = anaerobic glycoly	ysis Y = ATP-CP	Z = aerobic (75% correct)
C. X = ATP-CP	Y = aerobic	Z = anaerobic glycolysis
D. X = anaerobic glycoly	sis Y = aerobic	Z = ATP-CP
E. Idon't know.		

The copyright in substantial portions of this material is owned by the Victorian Curriculum and Assessment Authority. Used with permission. The VCAA does not endorse this product and makes no warranties regarding the correctness or accuracy of its content. To the extent permitted by law, the VCAA excludes all liability for any loss or damage suffered or incurred as a result of accessing, using or relying on the content. Current and past VCAA exams and related content can be accessed directly at <u>www.vcaa.vic.edu.au</u>

> We do our best to make these slides comprehensive and up-to-date, however there may be errors. We'd appreciate it if you pointed these out to us!